
Software system security in the era
of quantum computing

IS 471 Spring 2023
Lei Zhang

Classical Crypto

Private key (symmetric) encryption

3

Alice Bobshared key

plaintext plaintextencryption decryptionciphertext

(AES and 3DES)

Public key (asymmetric) encryption

4

(RSA, ECC and DH)

Alice BobBob’s public key Bob’s private key

plaintext plaintextencryption decryptionciphertext

Integer
factorization
• Problem: given an integer 𝑁, find its prime

factors (integer factorization), e.g., 15 = 3×5.
• RSA scheme (public key -> private key)

5

Practice (5 min)
• https://github.com/zhangl64/qiskit-

shor/blob/main/prime_factorization.py
• Download the code and test it with multiple numbers
– 2,764,973 = 37 x 74,729
– 5,436,949 = 29 x 187,481
– 11,346,317 = 3,431 x 3,307

• Command: time python prime_factorization

https://github.com/zhangl64/qiskit-shor/blob/main/prime_factorization.py
https://github.com/zhangl64/qiskit-shor/blob/main/prime_factorization.py

Shor’s algorithm

• The best classical algorithm has
complexity 𝑂(𝑒!.# $%&'

!" #($%&$%&') !$ #)
⎯ sub-exponential

• Shor’s algorithm can solve it in
quantum polynomial time
𝑂(𝑙𝑜𝑔𝑁 *(𝑙𝑜𝑔𝑙𝑜𝑔𝑁)(𝑙𝑜𝑔𝑙𝑜𝑔𝑙𝑜𝑔𝑁))

7

Peter Shor

Intro to Quantum

Fundamentals−what is
quantum computing?

Quantum computing is the use of
quantum mechanics (such as
superposition, entanglement, and
interference) to perform
computation.

9

Source: Microsoft

Timeline

First quantum
computing model

1982

First quantum
computer (2-
qubit)

1998

IBM: 5-qubit
quantum
computer

2016

IBM: 433-qubit
quantum computer

2022

Quantum Advantage

?

18 years 6 years

Qubits: a gentle introduction

11

A classical bit can only represent 0 or 1 at a time

= 0

A

A

= 1or

Qubits in superposition

12

1 qubit can represent 0 and 1 at the same time, i.e.,
“superposition”.

A
A

= {0, 1}

Qubits
• A classical bit can take the value of 0 or 1.

– A register of 𝑛 bits can be one of 2! states at a time.

• A qubit can be captured as a superposition
– A register of 𝑛 qubits can be 2! different states.

13
Source: Poetry in Physics

“I think I can safely say that nobody really understands
quantum mechanics,” Richard Feynman.

14

Quantum Crypto

Motivation

16

The effective security strength of key encryption algorithms
Encryption
type

Encryption
algorithm

Key size (bits) Effective
security level
on CCs (bits)

Effective
security level
on QCs (bits)

Public key

RSA 1024 1024 80 0

RSA 2048 2048 112 0

ECC 256 256 128 0

ECC 384 384 256 0

Private key
AES 128 128 128 64

AES 256 256 256 128
Shor’s algorithm & Grover’s algorithm on QCs

Now or future?

• If it was true, are you ready?
• Take action now: replace public-key

encryption with quantum-safe ones

18

Making your software quantum safe

National Security Memo
(NSM-10) on Mitigating
Risks to Quantum Attacks

May 4, 2022

OMB: Migrating to
Post-Quantum
Cryptography
(PQC)

Sep 7, 2022

Law H.R.7535 Quantum
Computing Cybersecurity
Preparedness Act

Nov 18, 2022

Dec 21, 2022

NIST PQC Standard;
Migration to PQC

2024--2033

Icons credits: Xmind and Flaticon

NSA: Commercial
National Security
Algorithm Suite
2.0 (CNSA 2.0)

What is PQC?

Classical
Algorithms

Classical
Computers

How to migrate to PQC?

1. Find Public-Key Encryption (PKE)

2. Replace PKE with PQC

PQC: Kyber

• https://github.com/pq-crystals/kyber

https://github.com/pq-crystals/kyber

Challenge 1
• How to identify all the functions related to

public key encryption?
– OpenVPN has 168,090 lines of code and 500 files

Challenge 2
• What happens if Kyber is not secure in the future?

ECDH

AES

ECDH

AES

Kyber

Classical Crypto Hybrid Crypto

Beyond this lecture…

IBM quantum systems

26

IBM Q Experience

Quantum development platforms

with the fact that measurement outcomes are repre-
sented by a dedicated type, this allows the restriction of
how local computations can impact the program flow via
the type system if needed, for example, to accommodate
current hardware limitations.

A salient feature of Q# is that it supports expressing
arbitrary classical control flow91. This is in contrast to other
quantum programming languages where this capability
is often provided by a classical host language. The rep-
resentation within the quantum programming language
itself permits developers to reason about the program
structure at the application level. This allows the integra-
tion of, for instance, computing precision requirements
for rotation synthesis18, or scheduling and layout on the
quantum chip for future large- scale applications.

Q# distinguishes between operations and functions.
Both are first- class values and can be freely assigned or
passed as arguments46. Functions are purely classical and
deterministic in nature. As a consequence, functions
can be fully evaluated as soon as their input is known.
Operations, however, may contain arbitrarily inter-
leaved classical and quantum computations, including
allocations and deallocations of quantum memory.

Unlike other quantum programming languages
geared towards supporting formal verification, qubits
are treated like any other data type in Q#. Some lan-
guages, such as Proto- Quipper- M92, use a linear- type
system to enforce the no- cloning property of quantum
states. By contrast, Q# treats qubits as virtual entities of
quantum memory. It thus takes a purely operational per-
spective, and has no notion of a quantum state within the
language itself 93.

In addition to abstractions such as type parameter-
ization and user- defined types that primarily serve
the purpose of user convenience and code robustness,
Q# defines constructs that facilitate representing and
leveraging certain quantum- specific patterns for opti-
mization. Examples for such constructs are borrowing
of qubits16, conjugations representing patterns of the
form UVU†, where U and V are some unitary transfor-
mations (see REF.59), and functors59. Functors can be seen
as higher- order bijective meta- functions that associate
quantum transformations that have a certain relation to

each other. The adjoint functor, for example, maps a uni-
tary quantum transformation to its inverse. Which set
of functors an operation supports is reflected in its type.
The captured relations can be exploited for optimization
purposes.

Q# is compiled in a standalone manner, making
whole program analysis more tractable. Q# offers inter-
operability with Python and .NET languages such as
C# and F#. Its nature as a standalone programming
language makes it easier to define a natural representa-
tion for quantum programs, as it is not constrained by
choices made in the host language. This comes at the
cost of not being able to leverage the rich set of exist-
ing tools for popular classical languages such as Python.
Q# comes with its own set of tools, including, among
others, support for Jupyter Notebooks59,61, and an imple-
mentation of the Language Server Protocol94 for provid-
ing semantic information to editors. Microsoft provides
two integrated development environment extensions for
Q#: Visual Studio Code, which is supported on macOS,
Linux and Windows, and Visual Studio for Windows.

A rich set of samples, libraries, tutorials and Katas
exist around Q# (see REFS95–97). In addition to domain-
specific libraries on chemistry, machine learning and
quantum arithmetic, the standard libraries offer an
arsenal of tools. Each contained callable and type is
extensively documented in the code. That information
is displayed to the user via integrated development
environment tools. The corresponding API documen-
tation is generated for each release, and complements
the documentation on the language, tools and quan-
tum computing concepts. Katas and other teaching
materials95, designed to learn about both quantum com-
puting and Q#, facilitate entering the field of quantum
computing.

The associated libraries, the Q# compiler and all
other components of the quantum development kit
are open source. Several NuGet packages are currently
distributed, including a package containing tools for
simulation and resources estimation. Microsoft has
partnered with hardware providers to offer a service for
executing Q# code on quantum hardware as part of the
cloud- based Azure Quantum service63. This comes at

Table 1 | Overview of the languages surveyed in this Review

Feature Q# Qiskit Cirq Quipper Scaffold

Invocation Standalone, usable from
Python, C#, F#

Embedded into Python Embedded into
Python

Embedded into Haskella Standalone

Classical feedback Yes Yesb No Yes Yesc

Adjoint generation Yes Yes Yes Yes No

Resource estimation Gate counts, number of
qubits, depth and width,
call graph profiling

Gate counts, number of
qubits, depth and width

Gate counts,
number of qubits

Gate counts, number of
qubits, depth and width

Gate counts, number
of qubits, depthd

Libraries Standard, chemistry,
numerics, ML

Standard, chemistry,
optimization, finance,
QCVV, ML

Standard,
chemistry, ML

Standard, numerics Standarde

Learning materials Docs, tutorials, Katas Docs, tutorials, textbook Docs, tutorials Docsf, tutorials Tutorialsg

aStandalone versions such as Proto- Quipper- S and Proto- Quipper- M are proposed or under development. bSome restrictions apply regarding allowed types and
language constructs in OpenQASM branching statements. cHowever, see relevant GitHub issue122 regarding code generation for classical feedback. dResources
estimation includes different flavours of error correction (see REF.123). eSee REF.121 for the current selection of implemented algorithms. fOnline API documentation
available in REF.124. gTutorials and manual in REFS116,118. ML, machine learning; QCVV, quantum characterization, verification and validation.

www.nature.com/natrevphys

REV IEWS

716 | DECEMBER 2020 | VOLUME 2

28

Kahoot!
• No need to sign up
• Any mobile devices with Internet
– Phone, laptop, etc

• Just type the web link in your browser:
www.kahoot.it

• Join with PIN on the screen

Thank you! Please take the survey.

30

https://forms.gle/fErS4QPubt9kFw6C8

https://forms.gle/fErS4QPubt9kFw6C8

